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ABSTRACT
Motivated by recent work studying massive functional data, such as the COVID-19 data, we propose a new
dynamic interaction semiparametric function-on-scalar (DISeF) model. The proposed model is useful to
explore the dynamic interaction among a set of covariates and their effects on the functional response. The
proposed model includes many important models investigated recently as special cases. By tensor product
B-spline approximating the unknown bivariate coefficient functions, a three-step efficient estimation
procedure is developed to iteratively estimate bivariate varying-coefficient functions, the vector of index
parameters, and the covariance functions of random effects. We also establish the asymptotic properties of
the estimators including the convergence rate and their asymptotic distributions. In addition, we develop
a test statistic to check whether the dynamic interaction varies with time/spatial locations, and we prove
the asymptotic normality of the test statistic. The finite sample performance of our proposed method and
of the test statistic are investigated with several simulation studies. Our proposed DISeF model is also used
to analyze the COVID-19 data and the ADNI data. In both applications, hypothesis testing shows that the
bivariate varying-coefficient functions significantly vary with the index and the time/spatial locations. For
instance, we find that the interaction effect of the population aging and the socio-economic covariates,
such as the number of hospital beds, physicians, nurses per 1000 people and GDP per capita, on the COVID-
19 mortality rate varies in different periods of the COVID-19 pandemic. The healthcare infrastructure index
related to the COVID-19 mortality rate is also obtained for 141 countries estimated based on the proposed
DISeF model.
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1. Introduction

When a variable is measured or observed at multiple times,
the variable can be treated as a function of time. The variable
is therefore called a functional variable, and the data for the
variable are called functional data (Ramsay and Silverman 2005;
Ferraty and Vieu 2006). The functional data are often func-
tions of time, but may also be functions of spatial locations,
wavelengths, etc. Functional regression models the relationship
among functional and scalar variables, and is widely used in
functional data analysis (Morris 2015). The existing literature
about functional regression can be divided into three categories
depending on whether the responses or covariates are func-
tional or scalar data (i) functional responses with functional
covariates (Jiang and Wang 2011; Cai, Xue, and Cao 2021); (ii)
scalar responses with functional covariates (Ferré and Yao 2003;
Ainsworth, Routledge, and Cao 2011; Liu, Wang, and Cao 2017;
Lin et al. 2017; Guan, Lin, and Cao 2020; Jiang et al. 2020);
and (iii) functional responses with scalar covariates (Zhu, Li,
and Kong 2012; Luo, Zhu, and Zhu 2016; Li, Huang, and Zhu
2017).

The functional regression with functional responses and
scalar covariates is also called the function-on-scalar model.

CONTACT Jiguo Cao jiguo_cao@sfu.ca Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia,
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Several extensions of the basic function-on-scalar model have
been proposed due to the complexity of the real data. For
instance, a varying-coefficient model, proposed by Hastie and
Tibshirani (1993), allows the regression coefficients to vary
over some predictors of interest and is extended to functional
data by Zhu, Li, and Kong (2012). Luo, Zhu, and Zhu (2016)
proposed a single-index varying-coefficient (SIVC) model to
establish a varying association between the functional response
(e.g., images) and a set of covariates, especially various clinical
variables, such as age and gender. In the SIVC model, the single-
index vector is allowed to change with the observed times or
spatial locations. This allows one to characterize the dynamic
association between the covariates and the functional response.
Li, Huang, and Zhu (2017) proposed a novel functional vary-
ing coefficient single-index model (FVCSIM) to allow that the
relationship between some covariates, denoted as X, and the
functional response changes with the location/time, and the
effect of the remaining covariates, denoted as Z, on the func-
tional response is characterized by an index function. However,
these researches fail to capture the interaction effects between
covariates X and Z, besides, it ignores the dynamic effect of the
single index of the covariates Z.

© 2021 American Statistical Association
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Table 1. The number of COVID-19 death cases in various age groups for eight countries including Australia, Brazil, France, Germany, Italy, Japan, Norway, and Sweden.

Country Australia Brazil France Germany Italy Japan Norway Sweden

Date of reporta 12.16 12.16 12.10 12.08 12.02 12.06 12.10 12.07
Age 0-9 0 288 4 7 7 0 0 0
Age 10–19 0 1167 5 3 5 0 0 0
Age 20-29 1 1709 35 24 26 2 0 0
Age 30-39 2 5217 143 46 118 6 3 0
Age 40-49 2 11219 420 153 493 23 6 76
Age 50-59 15 21975 1446 595 1893 67 12 181
Age 60-69 38 39136 4279 1635 5452 194 35 455
Age 70-79 157 45764 8690 4047 14142 556 83 1442
Age 80+ 693 50399 24089 12804 33679 1285 243 4881
Total deaths 908 176874 39111 19314 55815 2133 382 7035

aFor each country, we extracted information from the most up-to-date situational reports as of December 16, 2020.

The dynamic interaction effects between covariates X and
Z are found when we analyze the Coronavirus disease 2019
data. Coronavirus disease 2019 (COVID-19) is an infectious
disease caused by severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2). According to the official website of the
World Health Organization (WHO) (https://covid19.who.int),
as of December 16, 2020, there have been 72,196,732 confirmed
cases of COVID-19 across about 271 countries and territories,
resulting in 1,630,521 deaths. It should be pointed out that due to
differences in the testing capabilities and policy reasons of vari-
ous countries, there may be some biases in the published num-
ber of reported cases and deaths of COVID-19. The COVID-19
pandemic is impacting the global population in drastic ways. To
roughly show the distribution of age among COVID-19 deaths,
we choose eight countries with at least 100 reported COVID-
19 deaths, including Australia, Brazil, France, Germany, Italy,
Japan, Norway, and Sweden. These eight countries also have a
breakdown of mortality by age available. Table 1 provides the
number of COVID-19 death cases in various age groups for the
eight countries. See Table S.3 in the supplementary document
for a complete listing of the data source. Figure 1 displays the
distribution of COVID-19 deaths by age groups for the eight
countries. From Table 1 and Figure 1, we can see that in many
countries, although all age groups are at risk of dying from
COVID-19, older people face the greatest risk of death due to
underlying health conditions (Carroll et al. 2020).

Figure 1. Distribution of COVID-19 deaths by age groups for eight countries includ-
ing Australia, Brazil, France, Germany, Italy, Japan, Norway, and Sweden.

In this article, we focus on studying how the population
aging (age ≥ 65) affects the mortality rate of COVID-19. The
country-level data on COVID-19 death and confirmed number
of cases is obtained from the repository of John Hopkins Univer-
sity (https://github.com/CSSEGISandData/COVID-19) and cov-
ers up the period from January 22, 2020, when Wuhan City
was locked down, to November 30, 2020 (exactly 120 days
after 173 countries reach 100 confirmed cases). The COVID-
19 mortality rate can be calculated by the equation: death
number of cases/total population. We also collect the socio-
economic data from the World Bank (https://data.worldbank.
org/indicator), including the latest total population, the percent
of the population with aged 65 and above, the GDP per capita in
the U. S. Dollar, the number of physicians per 1000 people, the
number of nurses per 1000 people, and the number of hospital
beds per 1000 people.

Note that the relationship between the COVID-19 mortality
rate and the population aging may not only depend on these
socio-economic variables but also changes with time. Due to
the different outbreak times in different countries, we choose
the time when a country reports the first 100 confirmed cases as
the original time of the analysis (Lee et al. 2021; Liu, Moon, and
Schorfheide 2021) and focus on the 120 days thereafter. Note
that the original time between neighboring countries are very
close. For example, the original time in Japan and South Korea
are very close, and the original time in the United States and
Canada are also very close. After preprocessing and matching,
we have data of 141 countries for both the mortality rate and
socio-economic covariates variable. To assess how this depen-
dence varies with time, we divide the time into four equal
periods: Period I (the 1st–30th day since 100 confirmed cases),
Period II (the 31st–60th day since 100 confirmed cases), Period
III (the 61st–90th day since 100 confirmed cases), and Period IV
(the 91st–120th day since 100 confirmed cases). In each period,
we fit an SIVC model Y(t) = α1(ZTβ) + aging× α2(ZTβ) +
η(t), where Y(t) is the COVID-19 mortality rate of each country
at time t, aging is the percentage of the population with
aged 65 and above, and Z is the vector of four socio-economic
variables including the GDP per capita, the number of hospital
beds per 1000 people, the number of physicians per 1000 people,
and the number of nurses per 1000 people for each country.
Figure 2 displays the two estimated varying coefficients α1(ZTβ)

and α2(ZTβ) from the data in the four periods. These estimated
varying coefficients show different patterns for different periods.
Such preliminary evidence suggests the dynamic effect of the

https://covid19.who.int
https://github.com/CSSEGISandData/COVID-19
https://data.worldbank.org/indicator
https://data.worldbank.org/indicator
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Figure 2. The estimated varying coefficients α1(ZT β) and α2(ZT β) for the SIVC model Y(t) = α1(ZT β) + aging× α2(ZT β) + η(t) in the four time periods: Period I
(the 1st–30th day since 1000 confirmed cases), Period II (the 31st–60th day since 100 confirmed cases), and Period III (the 61st–90th day since 100 confirmed cases), and
Period IV (the 91st–120th day since 100 confirmed cases).

population aging on the COVID-19 mortality rate, which will
be confirmed with the formal hypothesis test result in Section 6.

To capture the dynamic interaction effects between the pop-
ulation aging and the socio-economic variables on the COVID-
19 mortality rate, we propose a novel semiparametric varying-
coefficient model

Y(t) = XTα(t, ZTβ) + η(t), (1)

where Y(t) is a functional response process for t ∈ [a, b] and
superscript T denotes the transpose of a vector or matrix. The
effect of the covariate vector X = (X1, . . . , Xp)T , quantified
by the bivariate varying-coefficient functions α(t, ZTβ), not
only depends on the covariate Z = (Z1, . . . , Zq)T through a
linear index ZTβ , but also changes with t. Therefore, α(t, ZTβ)

represents the dynamic interaction between X and Z. We will
estimate α(·, ·) with no parametric assumption, while keep the
interpretability of the interaction by using the linear index ZTβ ,
so model (1) is semiparametric. We call (1) the dynamic interac-
tion semiparametric function-on-scalar (DISeF) model in this
article. The random function η(t) characterizes individual curve
variations and is assumed to be a stochastic process with mean
zero and covariance function R(s, t) = cov{η(s), η(t)}.

In real applications, the process Y(t) is not observable,
but can be measured at any given time/spatial point sm with
a random error. We sample n subjects {(yi(sm), Xi, Zi)|i =
1, . . . , n, m = 1, . . . , M}, and the sample version of DISeF (1)
is written as

yi(sm) = XT
i α(sm, ZT

i β) + ηi(sm) + εi(sm), (2)

where yi(sm) is the observation for the ith subject at sm, ηi(sm)

is a realization of the subject-specific random function ηi(t) at
sm, and εi(sm)

�= εi,m are independent measurement errors with
mean zero and variances σ 2(sm) = Var(εi(sm)). In addition,
ηi(sm) and εi(sm) are independent.

Various existing models are special cases of the DISeF
model (2). For example, when the varying coefficient function
α(sm, ZT

i β) in Equation (2) is only a univariate function of
sm, the DISeF model can be reduced to the functional varying
coefficient model proposed by Zhu, Li, and Kong (2012). When
the covariates vector Xi is 1, the DSIeF model can turn into
the bivariate single-index model proposed by Jiang and Wang

(2011). Besides, when the varying coefficient function is spec-
ified as α(sm, ZT

i β) = α0(ZT
i β) + α̃(sm), the DSIeF model

becomes the functional varying coefficient single-index model
proposed by Li, Huang, and Zhu (2017).

We propose a three-step estimation procedure to estimate the
bivariate varying-coefficient function α(·, ·), the index param-
eter vector β , and the covariance functions R(s, t) and σ 2(sm)

in the DISeF model (2). At the first step, we develop a pro-
file least-square (PLS) estimation approach for estimating the
index parameter vector β and the bivariate function α(·, ·), in
which α(·, ·) is approximated by tensor product B-spline basis
functions (de Boor 1978). At the second step, we estimate the
covariance functions R(s, t) and σ 2(s, s) with the help of the PLS
estimators. At the final step, we propose a weighted profile least-
square (WPLS) method to improve the efficiency of the PLS esti-
mators by borrowing information from the dependence and het-
eroscedasticity among the time/spatial point t. The asymptotic
properties of the proposed estimators are also established. The
proposed estimator for the index parameter vector β is shown
to be

√
n-consistent and asymptotically normally distributed.

We also show that the proposed estimator for the bivariate
varying-coefficient function α(·, ·) is asymptotically consistent
and normally distributed.

The rest of this article is organized as follows. In Section 2,
an efficient estimation procedure is introduced to iteratively
estimate all unknown parameters and functions in the DISeF
model. In addition, we extend the estimation procedure to the
DISeF model with multi-index. Section 3 systematically inves-
tigates the asymptotic properties of the proposed estimators.
Section 4 describes the hypothesis testing procedure for the
varying coefficient component. The finite-sample performance
of the proposed model is evaluated with several simulation
studies in Section 5. We also demonstrate the proposed model
by analyzing the COVID-19 data in Section 6. Some conclusions
and discussion are provided in Section 7. Appendix gives the
conditions used in the asymptotic properties.

2. The Estimation Procedure

In this section, we propose to estimate the DISeF model (2) in
three steps, which is represented by the flowchart in Figure 3.
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Figure 3. A flowchart for estimating the dynamic interaction DISeF model (2) in three steps.

We will introduce the estimation details for each step in the next
three subsections.

A single-index model is not identifiable in the absence of
constraints on its structure. For the univariate semiparametric
single-index model, Xia et al. (2002) and Lin and Kulasekera
(2007) proposed a standard model identification method by
assuming that the parameter vector has a positive first com-
ponent and the norm of the parameter vector equals to one,
which means β belongs to the parameter space � = {β =
(β1, . . . , βq)T : ||β||2 = 1, β1 > 0} with ‖ · ‖2 being
the Euclidean norm. In this paper, to ensure identifiability, we
consider using the same identification method for the DISeF
model (2). Denote an index by U(β) = ZTβ , which is assumed
to be confined in a compact set Sω, and without loss of generality,
set Sω = [0, 1].
Proposition 1. Assume that β ∈ � and α(s, u) is continuous and
nonconstant over s ∈ [0, 1] and u ∈ [0, 1]. Then the model (2)
is identifiable.

Denote β−1 = (β2, . . . , βq), then β−1 belongs to the space
�−1 = {β−1 = (β2, . . . , βq)T : ||β−1||22 < 1}, and the original
index parameter β can be rewritten as

β = (

√
1 − ||β−1||22, βT−1)

T . (3)

The Jacobian matrix is given by J = ∂β/∂β−1 =(
−β−1/

√
1 − ||β−1||22, Iq−1

)T
, where Iq−1 is an identity

matrix.

2.1. Profile Least-Squares Estimation

Due to its desirable numerical stability and computational
efficiency in practice (Ma, Song, and Wang 2013; Wang and
Yang 2009), tensor product B-splines (de Boor 1978) are com-
monly used to approximate unknown bivariate nonparamet-
ric functions. Let B(s) = (B1(s), . . . , BN1(s))T and B(u) =
(B1(u), . . . , BN2(u))T be two sets of B-spline basis functions of
the order κ with L1 and L2 internal knots, where the order κ ≥ 2.
Let N1 = L1 + κ , N2 = L2 + κ . When κ = 4, denote the vector
of the tensor product cubic B-spline basis functions as B(s, u) =
B(s) ⊗ B(u) = (Bl(s)Bk(u) : 1 ≤ l ≤ N1, 1 ≤ k ≤ N2)

T . We

approximate the bivariate varying-coefficient function αd(·, ·)
by a linear combination of tensor product B-spline basis func-
tions: αd(·, ·) ≈ B(s, u)Tθd, where θ = (θT

1 , . . . , θT
p )T is the

vector of spline coefficients with θd = (θlk,d : 1 ≤ l ≤ N1, 1 ≤
k ≤ N2)

T for d = 1, . . . , p.
We can obtain the estimators of the spline coefficients θ and

the index parameter vector β by minimizing

L(β , θ) =
M∑

m=1

n∑
i=1

{
yi(sm) −

p∑
d=1

XidB (sm, Ui(β))T θd

}2

.

(4)
Minimizing (4) is difficult to compute, which requires con-
strained nonlinear programming. Therefore, we consider an
iterative procedure to estimate the parameters β and θ . The
detailed estimation steps are given below.

Step 0. Start with an initial value β̂
(0) such that ||̂β(0)||2 = 1 and

‖β̂(0) − β‖ = Op(1/
√

n).
Step 1. For any given β , then θ̂(β) can be obtained by

θ̂(β) = arg min
θ(β)∈Rp×N1×N2

L(θ , β). (5)

Denote Bmi(β)=(Xi1B (sm, Ui(β))T , . . . , XipB(sm, Ui(β))T)T

= Xi ⊗ B(sm, Ui(β)). The solution to (5) is

θ̂(β) =
{ M∑

m=1

n∑
i=1

Bmi(β)Bmi(β)T
}−1 M∑

m=1

n∑
i=1

Bmi(β)yi(sm).

(6)
Let Bi(β) = (B1i(β), . . . , BMi(β))T and yi = (yi(s1),
. . . , yi(sM))T . Then Equation (6) can be expressed as θ̂(β) ={∑n

i=1 Bi(β)TBi(β)
}−1 ∑n

i=1 Bi(β)Tyi. Thus, the estimator
of the bivariate varying coefficient function is α̂PLS(s, u) =
(B(s, u)T θ̂1(β), . . . ,B(s, u)T θ̂p(β))T = (Ip ⊗B(s, u)T )̂θ(β).
Then the partial derivative α(2)(s, u) = ∂α(s, u)/∂u is given
by α̂

(2)
PLS(s, u) = (Ip ⊗ (B(s) ⊗ Ḃ(u))T )̂θ(β), where Ḃ(u) is

the first-order derivative of B(u).
Step 2. Denote α̂PLS(S , Ui(β)) = (̂αPLS(s1, Ui(β)), . . . , α̂PLS

(sM , Ui(β)))T , and α̂
(2)
PLS(S , Ui(β)) = (̂α

(2)
PLS(s1, Ui(β)), . . . ,

α̂
(2)
PLS(sM , Ui(β)))T . We can use the current estimate β̂

(k) to
update the estimator of β−1 with the following Fisher scoring
algorithm:

β̂
(k+1)

−1 = β̂
(k)
−1 −

{
∂2L(β)

∂β−1∂βT−1

}−1
∂L(β)

∂β−1
|
β−1=β̂

(k)
−1

, (7)

where ∂2L(β)

∂β−1∂βT−1
= ∂(∂L(β)/∂β−1)

∂βT−1
, and ∂L(β)

∂β−1
= −∑n

i=1{̂α(2)
PLS

(S , Ui(β))XiZT
i J + Bi(β)

∂ θ̂(β)
∂β−1

}T {
yi − α̂PLS(S , Ui(β))Xi

}
.

Step 3. Repeat Steps 1 and 2 until convergence to obtain the
final estimator β̂−1,PLS. We then apply formula (3) to get
the estimators β̂PLS. Then the tensor product cubic B-spline
estimators of the bivariate nonparametric functions α(s, u)

and α(2)(s, u) are α̂PLS(s, u; β̂PLS) = (Ip ⊗ B(s, u)T )̂θ(β̂PLS)

and α̂
(2)
PLS(s, u; β̂PLS) = (Ip ⊗ (B(s) ⊗ Ḃ(u))T )̂θ(β̂PLS),

respectively.
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2.2. The Estimation of Covariance Functions

The covariance matrix for the response observed at M grid
points in the sample, denoted by �, is given by � =
cov(yi|Xi, Zi) = (R(sl, sk) + σ 2(sl)I(sl = sk))k,l=1,...,M , where
I(·) is an indicator function. We want to adapt the covariance
matrix to obtain more efficient estimators for α(·, ·) and β .
However, � is generally unknown in practical applications, so
we need to estimate it to gain the efficient estimators of α(·, ·)
and β . With the estimator β̂PLS and α̂PLS(·, ·) from Section 2.1,
we can get

yi(sm) ≈ XT
i α̂PLS(sm, Ui(β̂PLS)) + ηi(sm) + εi(sm). (8)

Let y�
i (sm) = yi(sm)−XT

i α̂PLS(sm, Ui(β̂PLS)), then Equation (8)
can be expressed as y�

i (sm) = ηi(sm) + εi(sm).
Let Bη(s) = (B1(s), . . . , BKη (s))T and bi = (bi1, . . . , biKη )

T ,
where Kη is the number of basis functions. Then the individual
functions ηi(sm), i = 1, . . . , n, m = 1, . . . , M, can be approx-
imated by the cubic spline functions: ηi(sm) ≈ Bη(sm)Tbi =∑Kη

k=1 Bk(sm)bik, in which bi is estimated by

̂bi = arg min
bi∈RKη

M∑
m=1

{
y�

i (sm) − Bη(sm)Tbi
}2 . (9)

Denote y�
i = (y�

i (s1), . . . , y�
i (sM))T and Bη = (Bη(s1), . . . ,

Bη(sM))T . The solution to Equation (9) is expressed as ̂bi =
(BT

η Bη)
−1BT

η y�
i . Thus, the cubic spline estimator of ηi(sm) is

η̂i(sm) = Bη(sm)T b̂i.
The covariance function R(s, t) can thus be estimated by an

empirical covariance estimator R̂(s, t) = 1/n
∑n

i=1 η̂i(s)̂ηi(t).
Subsequently, we can calculate the spectral decomposition (Li
and Hsing 2010; Hall and Hosseini-Nasab 2006) of R̂(s, t) as
follows: R̂(s, t) = ∑∞

l=1 λ̂lψ̂l(s)ψ̂l(t), where λ̂1 ≥ λ̂2 ≥ · · · ≥ 0
are estimated eigenvalues and the ψ̂l(s), l = 1, . . . , are the
corresponding estimated eigenfunctions.

The variance function σ 2(s) measures the variation of
ε(s). It can be estimated based on the residuals ε̂i(s) =
y�

i (s) − η̂i(s). Define the spline estimator for σ 2(s) =
E(ε2

i (s)) as σ̂ 2(s) = ∑Kσ2
k=1 Bk(s)̂ck, where Kσ 2 is the num-

ber of basis functions, and ĉ = (̂c1, . . . , ĉKσ2 )
T is given by

ĉ = arg minc∈RK
σ2

∑n
i=1

∑M
m=1

{̂
ε2

i (sm) − ∑Kσ2
k=1 Bk(sm)ck

}2
.

Denote ε̂2
i = (̂ε2

i (s1), . . . , ε̂2
i (sM))T , Bε(sm) = (B1(sm), . . . ,

BKσ2 (sm))T , and Bε = (Bε(s1), . . . ,Bε(sM))T , then ĉ can be
expressed as ĉ = (BT

ε Bε)
−1(BT

ε

∑n
i=1 ε̂2

i /n). So, the spline
estimator of σ 2(s) is given by σ̂ 2(s) = Bε(s)T̂c. Thus, � can
be estimated as �̂ = (̂R(sl, sk) + σ̂ 2(sl)I(sl = sk))k,l=1,...,M .

2.3. WPLS Estimation

In this section, we adapt the covariance matrix to obtain more
efficient estimators of the spline coefficients θ and the index
parameter vector β by minimizing

L̃(θ , β) =
n∑

i=1

{
yi − Bi(β )̃θ(β)

}T
�−1 {

yi − Bi(β )̃θ(β)
}

.

(10)
Similarly, it is difficult to directly minimize (10). Therefore, we
consider an iterative estimation procedure as follows.

Step 0. Get an initial value β̂
(0) such that ‖β̂(0)‖2 = 1 and

‖β̂(0) − β‖ = Op(1/
√

n).
Step 1. For any given β , we can obtain

θ̃(β) =
{ n∑

i=1
Bi(β)T�−1Bi(β)

}−1 { n∑
i=1

Bi(β)T�−1yi

}
,

(11)
and α̃(s, u) = (Ip ⊗ B(s, u)T )̃θ(β).

Step 2. We can update the estimator of β−1 using the following
iterative procedure:

β̂
(k+1)

−1 = β̂
(k)
−1 −

{
∂ 2̃L(β)

∂β−1∂βT−1

}−1
∂ L̃(β)

∂β−1

∣∣∣∣
β−1=β̂

(k)
−1

, (12)

where

∂ L̃(β)/∂β−1 = −
n∑

i=1

{
α̃(2)(S , Ui(β))XiZT

i J

+Bi(β)
∂ θ̃(β)

∂β−1

}T

�−1 {
yi − α̃(S , Ui(β))Xi

}
.

Step 3. Repeat Steps 1 and 2 until convergence to obtain the
final estimator β̂−1,WPLS. Then, we can get the estimators

β̂WPLS = (

√
1 − ||̂β−1,WPLS||22, β̂T

−1,WPLS)
T , α̂WPLS(s, u;

β̂WPLS) = (Ip ⊗ B(s, u)T )̃θ(β̂WPLS) and α̂
(2)
WPLS(s, u; β̂WPLS)

= (Ip ⊗ (B(s) ⊗ Ḃ(u))T )̃θ(β̂WPLS).

When we replace the unknown covariance matrix � in Equa-
tions (10) and (11) by its estimator gained from Section 2.2, we
can obtain the new objective function

L̂(θ , β) =
n∑

i=1

{
yi − Bi(β )̃θ(β)

}T
�̂

−1 {
yi − Bi(β )̃θ(β)

}
.

(13)
For any given β , we minimize L̂(θ , β) and obtain the estimator
θ̃

∗
(β) =

{∑n
i=1 Bi(β)T�̂

−1Bi(β)
}−1

∑n
i=1 Bi(β)T�̂

−1yi. The other details in the iterative procedure
of minimizing (13) is similar with those of minimizing (10) and
will not be repeated here. Finally, we obtain the feasible refined
estimator β̃WPLS for the parameter vector β . Thus, the feasible
refined tensor product cubic B-spline estimator of the bivariate
nonparametric function α(s, u) and α(2)(s, u) can be expressed
as α̃WPLS(s, u) = (Ip ⊗ B(s, u)T )̃θ

∗
(β̃WPLS) and α̃

(2)
WPLS(s, u) =

(Ip ⊗ (B(s) ⊗ Ḃ(u))T )̃θ
∗
(β̃WPLS), respectively.

2.4. Tuning Parameter Selection

In Sections 2.1 and 2.3, there are four tuning parameters to be
chosen. In the PLS and WPLS steps, we need to choose the
number of interior knots L1 and L2. As a common practice
in the spline literature, we select the number of interior knots
via a data-driven method and position them at equal intervals
on the sample quantiles. According to the Bayes information
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criterion (BIC), we choose the optimal number of interior knots
by minimizing the following BIC function:

BIC(L1, L2) = log

{
1

nM

n∑
i=1

M∑
m=1

(
yi(sm) − XT

i α̂(sm, Ui(β̂))
)2

}

+ log(nM)

2nM
(L1 + κ)(L2 + κ).

If α̂PLS(·, ·) and β̂PLS are used in the BIC function, we can choose
the optimal number of interior knots for the profile least squares
estimation at the first step. Similarly, we use α̃WPLS(·, ·) and
β̃WPLS in the BIC function to choose the optimal number of
interior knots for the weighted profile least squares estimation
at the third step. At both steps, BIC is minimized on the range
[(nM)

1
6 ] ≤ L1 ≤ [2(nM)

1
6 ] + 1 and [(nM)

1
6 ] ≤ L2 ≤

[2(nM)
1
6 ] + 1, where [a] denotes the closest integer to a.

In Section 2.2, we need to choose the number of basis
functions Kη and Kσ 2 , which are selected by generalized cross-
validation (GCV): GCV(Kη) = 1/(nM)

∑n
i=1

∑M
m=1(y∗

i (sm)−
η̂i(sm))2 × (

1 − Kη/(nM)
)−2, and GCV(Kσ 2) has the same

form as GCV(Kη) except that y∗
i (sm) and η̂i(sm) are replaced by

ε̂2
i (sm) and σ̂ 2(sm), respectively.

2.5. Extension to Multiple-index Models

In some applications, the index parameters β could be different
for each covariate Xd, d = 1, . . . , p. By some minor modifica-
tions, our method could be extended to tackle this situation.
Especially, we consider the following dynamic interaction DISeF
model which allows the index parameters to vary with different
Xd:

yi(sm) =
p∑

d=1
Xidαd(sm, ZT

i βd) + ηi(sm) + εi(sm).

Correspondingly, the identification condition is β ∈ �, where
� = {β = (βT

1 , . . . , βT
p )T : ‖βd‖2 = 1, βd1 > 0, d = 1, . . . , p}.

For each d, let βd,−1 = (βd2, . . . , βdq)
T , Ui(βd) = ZT

i βd and

the Jacobian matrix Jd =
(

−βd,−1/
√

1 − ‖βd,−1‖2
2, Iq−1

)T
.

The computational steps described in Sections 2.1 and 2.3 are
modified as follows to accommodate estimating the unknown
index parameters βd and bivariate functions αd(·, ·), d =
1, . . . , p. Replacing Bmi(β) in these sections by Bmi(β) =
(Xi1B

(
sm, Ui(β1)

)T , . . . , XipB
(

sm, Ui(βp)
)T

)T . Then ∂L(β)/

∂β−1 in Equation (7) and ∂ L̃(β)/∂β−1 in Equation (12) are
replaced, respectively, by ∂L(β)/∂β−1 = −∑n

i=1{Âi1, . . . ,
Âip}T {

yi−
∑p

d=1 α̂d,PLS(S , Ui(βd))Xid
}

and ∂ L̃(β)/∂β−1 =
−∑n

i=1
{
Ãi1, . . . , Ãip

}T
�−1

{
yi−

∑p
d=1 α̃d

(
S , Ui(βd)

)
Xid},

where Âid = α̂
(2)

d,PLS(S , Ui(βd))XidZT
i Jd + Bi(β)

∂ θ̂(β)
∂βd,−1

, Ãid =
α̃

(2)

d (S , Ui(βd))XidZT
i Jd + Bi(β)

∂ θ̃(β)
∂βd,−1

, α̂d,PLS(S , Ui(βd)) =
(̂αd,PLS(s1, Ui(βd)), . . . , α̂d,PLS(sM , Ui(βd)))

T and α̂
(2)

d,PLS(S , Ui

(βd)) = (̂α
(2)

d,PLS(s1, Ui(βd)), . . . , α̂(2)

d,PLS(sM , Ui(βd)))
T . After

these modifications, the iterative algorithm described in Sec-
tions 2.1 and 2.3 can be carried out to estimate βd, d = 1, . . . , p
simultaneously.

3. Asymptotic Properties

We first define some notations. The true values of β are denoted
by β0. For positive number sequences an and bn, let an � bn
mean that an/bn is bounded, an � bnmean that an � bn
and bn � an. Besides, an << bn means limn an/bn =
0. Let |S| be the cardinality of the set S and S(i) be the
ith element of S from small to large. For any matrix A, let
A⊗2 = AAT , tr(A) be the trace of A, and for two pos-
itive semi-definite matrices A and B, A ≥ B means that
A − B is positive semi-definite. Denote the space of r-order
smooth functions defined on [a, b] as C(r)[a, b] = {m|mr ∈
C[a, b]}, where C[a, b] is the collection of real-valued functions
that are bounded and continuous in [a, b]. Similar with Ma
and Song (2015), define the space M = {g(S, U(β0)) =
(g(s1, U(β0)), . . . , g(sM , U(β0)))

T , g(sm, U(β0)) = (g1(sm, U
(β0)), . . . , gp(sm, U(β0)))

T ,E(gd(sm, U(β0))
2) < ∞, d = 1,

. . . , p; m = 1, . . . , M}. For 1 ≤ k ≤ q, denote gk(S, U(β0)) =
arg ming0

k∈M E{(1M ⊗ Zk − g0
k(S, U(β0))X)T(1M ⊗ Zk − g0

k
(S, U(β0))X)},

P(Zk) = 1
M

1T
Mgk(S, U(β0))X = 1

M

M∑
m=1

gk(sm, U(β0))
TX,

(14)
P(Z) = {P(Z1), . . . ,P(Zq)}T , and Z̃ = Z − P(Z), where 1M is
an M ×1 vector of 1s. Define Pn(Zik) = M−11T

MBi(β0)̂θZk(β0),
where θ̂Zk(β0) = {∑n

i=1 Bi(β0)
TBi(β0)

}−1 ∑n
i=1 Bi(β0)

T(1M
⊗ Zik). Besides, define g∗

k by g∗
k(S, U(β0)) = arg ming∗,0

k ∈M E

{(1M ⊗ Zk − g∗,0
k (S, U(β0))X)T�−1(1M ⊗ Zk −

g∗,0
k (S, U(β0))X)},

Q(Zk) = 1
M

1T
Mg∗

k(S, U(β0))X = 1
M

M∑
m=1

g∗
k(sm, U(β0))

TX,

(15)
Q(Z) = {Q(Z1), . . . ,Q(Zq)}T , and Z = Z − Q(Z).
Denote Qn(Zik) = M−11T

MBi(β0)̃θZk(β0), where θ̃Zk(β0) ={∑n
i=1 Bi(β0)

T�−1 Bi(β0)
}−1 ∑n

i=1 Bi(β0)
T�−1(1M ⊗ Zik).

Here, P(Zk) and Q(Zk) are both averaged projections of Zk.
We state the following theorems, whose detailed conditions

and proofs can be found in the appendix and supplementary
document, respectively. The first theorem establishes the weak
convergence and asymptotic result of β̂−1,PLS.

Theorem 1. Under Conditions (C1)-(C5), nM/(N1N3
2 ) → ∞

and nM2(N1N2)
−2r → 0 as n, M → ∞, we have (i) (con-

sistency) ||̂β−1,PLS − β−1,0||2 = Op(n−1/2); (ii) (asymptotic
normality)

√
n�−1/2(β̂−1,PLS − β−1,0)

D→ N(0, Iq−1), where

� = {
E(H⊗2

i )
}−1

E(Hi�HT
i )

{
E(H⊗2

i )
}−1 , (16)

HT
i = α(2)(S , Ui(β0))XiZ̃

T
i J and α(2)(S , Ui(β0)) = (α(2)(s1,

Ui(β0)), . . . , α(2)(sM , Ui(β0)))
T .
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Remark 1. Due to formula (3) and ∂β/∂β−1 = J, by Theorem 1
with an application of the multivariate delta method, we can get
(i) ||̂βPLS − β0||2 = Op(n−1/2) and (ii)

√
n(J�JT)−1/2(β̂PLS −

β0)
D→ N(0, Iq).

The following theorem provides the convergence rate and
asymptotic distribution of α̂d(s, u; β̂PLS), d = 1, . . . , p.

Theorem 2. Under Conditions (C1)–(C5), nM/(N1N3
2) →

∞ and nM2(N1N2)
−2r → 0 as n, M → ∞, for any s, u

on [0, 1]2, we have (i) (consistency) for each 1 ≤ d ≤ p,
|̂αd,PLS(s, u; β̂PLS) − αd(s, u)| = Op(N−r

1 + N−r
2 +

√
N1N2
nM ); (ii)

(asymptotic normality) under (N1N2)2r+1/(nM) → ∞ as n →
∞,

√
Mn/(N1N2)�α(s, u)−1/2(̂αPLS(s, u; β̂PLS) − α(s, u))

D→
N(0, Ip), where

�α(s, u) = M
N1N2

Li(s, u)E(Bi(β0)
T�Bi(β0))Li(s, u)T , (17)

with Li(s, u) = (Ip ⊗ B(s, u))T {
E(Bi(β0)TBi(β0))

}−1.

Remark 2. The order assumptions regarding N1 and N2, in
Theorem 2 (i) imply that N1 � (nM)1/(2r+2) and N2 �
(nM)1/(2r+2), which is the optimal order for the number of
interior knots needed to estimate the bivariate nonparametric
functions. The convergence rate of estimator α̂d,PLS(s, u; β̂PLS)
is Op((nM)−r/(2r+2)). In Theorem 2 (ii), the required condition
(N1N2)

r+1/(nM) → ∞ for making the bias asymptotically
negligible simply means that one need use larger number of
knots than what are needed for achieving the optimal rate of
convergence.

We next study the convergence rate of the estimators η̂i(s)
and σ̂ 2(s) for the individual random function ηi(s) and the
covariance function of error term.

Theorem 3. (i) Under Conditions of Theorem 1-2, (C6), (C8),
and Kη → ∞, KηM−1 → 0, as M, n → ∞, one has |̂ηi(s)−
ηi(s)| = Op(K−r1

η + √
KηM−1) for any s ∈ [0, 1].

(ii) Under Conditions of Theorem 1-2, (C8) and Kσ 2 → ∞,
Kσ 2(nM)−1 → 0, as M, n → ∞, one has |̂σ 2(s)−σ 2(s)| =
Op(K−2r1

η + KηM−1 + K−r2
σ 2 ) for any s ∈ [0, 1].

The next theorem provides the asymptotic properties of the
estimated covariance function of the individual random func-
tion {ηi(s) : s ∈ [0, 1]} and its spectrum decomposition.

Theorem 4. Under Conditions (C1), (C2)-(i),(ii),(iv), (C3)–
(C6) and (C8), and N1, N2, Kη → ∞, nM/(N1N3

2) → ∞,
nM2(N1N2)

−2r → 0, KηM−1 → 0 as n, M → ∞, we have

(i) |̂R(s, t)−R(s, t)| = Op(K−r1
η +

√
Kη

M ) for any (s, t) ∈ [0, 1]2;
(ii) under Condition (C7), for l ≥ 1, (a)

∫ 1
0 {ψ̂l(s)−ψl(s)}2ds =

Op(K−r1
η + √

Kη/M) and (b) |̂λl − λl| = Op(K−r1
η +√

Kη/M).

We then present the asymptotic results for the feasible refined
estimators which fully acknowledge the dependence among
different time/spatial points in the error process.

Theorem 5. Under Conditions (C1)–(C8), nM/(N1N3
2) → ∞,

nM2(N1N2)−2r → 0, KηM−1 → 0 as n, M → ∞,

(i) for feasible refined estimator β̃−1,WPLS, we have: (a) (consis-
tency) ||̃β−1,WPLS − β−1,0||2 = Op(n−1/2); (b) (asymptotic
normality)

√
n	−1/2(β̃−1,WPLS − β−1,0)

D→ N(0, Iq−1),
where

	 =
{
E(Hi�

−1HT
i )

}−1
,

and HT
i = α(2)(S , Ui(β0))XiZ

T
i J. (18)

(ii) for any s, u on [0, 1]2 and the feasible refined estimator of
nonparametric function, we have: (a)(consistency) for each
1 ≤ d ≤ p, |̃αd,WPLS(s, u; β̃WPLS)−αd(s, u)| = Op(

√
N1N2
nM );

(b) (asymptotic normality)
√

nM
N1N2

	α(s, u)−1/2

(α̃WPLS(s, u; β̃WPLS) − α(s, u))
D→ N(0, Ip), where

	α(s, u) = M
N1N2

(Ip ⊗ B(s, u))T {
E(Bi(β0)

T�−1Bi

× (β0))}−1 (Ip ⊗ B(s, u)). (19)

Remark 3. Similarly, by Theorem 5-(i) with an application of
the multivariate delta method, we can get (i) ||̃βWPLS − β0||2 =
Op(n−1/2), and (ii)

√
n(J	JT)−1/2(β̃WPLS−β0)

D→ N(0, Iq). By
Lemma 5.1 in Jiang (2010), it is easy to prove that the covariance
matrices of β̃WPLS and α̃WPLS(s, u; β̂WPLS) are smaller than
those of β̂PLS and α̂PLS(s, u; β̂PLS), respectively. So, the improved
estimators are more asymptotically efficient.

Remark 4. In Theorem 1–5, all asymptotic covariance matrices
(16)–(19) are unknown and needed to estimate. There, Z̃ can
be estimated by ̂̃Z = Z − Pn(Z; β̂PLS), Z can be estimated by
Ẑ = Z−Qn(Z; β̃WPLS, �̂), ĤT

i = α̂
(2)
PLS(S , Ui(β̂PLS))Xi

̂̃ZT
i J and

Ĥ
T
i = α̃

(2)
WPLS(S , Ui(β̃WPLS))XiẐ

T
i J. Thus we can estimate the

covariance matrix (16) by �̂ =
{∑n

i=1 Ĥ
⊗2
i

}−1 ∑n
i=1 Ĥi�̂ĤT

i{∑n
i=1 Ĥ

⊗2
i

}−1
. For �α in (17), it can be estimated by

�̂α(s, u) = nM/(N1N2)̂Li(s, u)
∑n

i=1(Bi(β̂PLS)
T�̂Bi(β̂PLS))̂Li

(s, u)T , where L̂i(s, u) = (Ip ⊗ B(s, u))T{∑n
i=1(Bi(β̂PLS)

TBi

(β̂PLS))}−1. Similarly, the estimator of 	 is 	̂ = {∑n
i=1 Ĥi�̂

−1

Ĥ
T
i }−1. And, for 	α , it can be estimated by 	̂α(s, u) =

nM/(N1N2)(Ip ⊗ B(s, u))T{∑n
i=1 Bi(β̃WPLS)

T�̂
−1 Bi

(β̃WPLS)}−1 (Ip ⊗ B(s, u)).

4. Hypothesis Test

We are interested in testing whether some bivariate varying-
coefficient functions in the DISeF model (2), αd(sm, Ui(β)), d =
1, . . . , p, do not change with the index Ui(β). In other words, the
null hypothesis can be expressed as follows:

H0 : αd(t, u) = αd(t), a.s. on [0, 1]2,

where d ∈ S� ⊆ {1, . . . , p}, and S�={d : we want to test
whether αd(t, u) changes with the index Ui(β)}. Note that the
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DISeF model (2) reduces to a varying coefficient model under
the null hypothesis and S� = {1, . . . , p}. Let αS� (t, u) be the
|S�| × 1 vector of all αd(t, u), d ∈ S�, and α(t) be an |S�| × 1
vector of univariate functions αd(t), d ∈ S�. There always exists
a matrix A such that αS� (t, u) = Aα(t, u), where A is a |S�| × p
matrix with the elements aij = 1 if j ∈ S� and aij = 0 otherwise.
Then the null hypothesis can be expressed equivalently as

H0 :
∫ 1

0

∫ 1

0
||Aα(t, u) − α(t)||2dtdu = 0. (20)

A natural way to come up with a test statistic for Equation (20)
is to replace the unknown functions α(t, u), and α(t) by their
nonparametric spline estimators. We can then define the L2-
distance test statistic

T = nM
N1N2

∫ 1

0

∫ 1

0
||Aα̃WPLS(t, u; β̃WPLS)−α̃(t; β̃0

WPLS)||2dtdu,

(21)
where α̃(t; β̃0

WPLS) and β̃
0
WPLS are the improved estimators

taking the correlation structure into account under the null
hypothesis. The estimation procedure under the null hypothesis
is put in Section S1 of the supplementary document.

In the next theorem, we present a central limit theorem for
the test statistic T under the null hypothesis.

Theorem 6. Suppose that Conditions (C1)–(C8) hold. If
nM/(N1N3

2) → ∞, nM2(N1N2)−2r → 0, KηM−1 → 0 as
n, M → ∞, then under H0, it follows that T − B D→ N(0, V),
where B = M/(N1N2)

∫ 1
0

∫ 1
0 tr(ATA	α(t, u))dtdu, and V =

8(M/(N1N2))
2 ∫ 1

0
∫ 1

0 tr(ATA	⊗2
α (t, u))dtdu.

To investigate the power of the test, we define the local
alternatives converging to the null hypothesis as the sample size
grows; that is H1,α : Aα(t, u) = α(t) + cn,Mδ(t, u), where
cn,M → 0 as n, M → ∞ and δ(·, ·) is a continuous function
vector.

Theorem 7 gives the asymptotic distribution of the test statis-
tic under the local alternative hypothesis.

Theorem 7. Suppose the conditions of Theorem 6 hold and
let cn,M = √

N1N2/(nM). Then, under the local alternative
hypothesis H1,α , we have T − B D→ N(̃δ, V), with δ̃ =∫ 1

0
∫ 1

0 ||δ(t, u)||2dtdu.

Although we can prove the asymptotic distribution of T
under the null or alternative hypothesis, such a theoretical result
does not produce a good approximation when the sample size is
actively small. Thus, we propose the following wild bootstrap
test procedure.

Step 1. Perform the proposed method to estimate β̃WPLS,
α̃d(sm, Ui(β̃WPLS)), η̂i(sm) and ε̂i(sm).

Step 2. Under H0, we obtain the estimators α̃d/∈S�,WPLS(sm, Ui

(β̃
0
WPLS)), α̃(sm; β̃0

WPLS), β̃
0
WPLS and then compute the

estimated T using Equation (21).
Step 3. Draw ξ

(b)
i and ξ

(b)
im for i = 1, . . . , n and

m = 1, . . . , M independently from the standard
normal distribution and the bootstrap sample
is given by {y(b)

i (sm), Xi, Zi}, where we define

y(b)
i (sm) = ∑

d/∈S� α̃d,WPLS(sm, Ui(β̃
0
WPLS))Xid

+ (Xid)
T
d∈S� α̃(sm; β̃0

WPLS) + η̂i(sm)ξ
(b)
i + ε̂i(sm)ξ

(b)
im .

Step 4. Given the bootstrap sample {y(b)
i (sm), Xi, Zi}, we can

then compute the corresponding bootstrap test statistics
T(b)

T (b) = nM
N1N2

∫ 1

0

∫ 1

0
||Aα̃

(b)
WPLS(t, u; β̃(b)

WPLS) − α̃(b)

× (t; β̃0,(b)

WPLS)||2dtdu, (22)

where α̃
(b)
WPLS(t, u; β̃(b)

WPLS), α̃(b)(t; β̃0,(b)

WPLS), β̃
0,(b)

WPLSand
β̃

(b)

WPLS are the estimators for the bootstrap sample.
Step 5. Repeat Step 3 and 4 B times to obtain {T (b) :

b = 1, . . . , B} and then estimate the test p-value as
B−1 ∑B

b=1 I(T (b) ≥ T ). Reject H0 when the p-value is
lower than a prespecified significant level α.

The next theorem shows that the bootstrap test statistic T (b) has
the same asymptotic distribution as T .

Theorem 8. Under the conditions of Theorem 6, the bootstrap
statistic T (b) defined in Equation (22) has the distribution
T (b) − B D→ N(0, V).

The test procedure about whether the bivariate varying coef-
ficient functions are related to space or time is similar to the
above test, which is omitted for simplicity.

5. Simulation Studies

In this section, we conduct two simulation studies to illustrate
the finite performances of our proposed model, estimation pro-
cedure and hypothesis testing. In the supplementary document,
we conduct an additional simulation study to compare the per-
formance of the DISeF model with the SIVCM.

5.1. Simulation I

In this simulation study, the data are generated from the DISeF
model (2), in which sm ∼ U[0, 1], (Xi1, Xi2)T iid∼ N(0, 2I2) and
Xi = (1, Xi1, Xi2)T for all i = 1, . . . , n and m = 1, . . . , M.
For the random term, ηi(s) = ξi1ψ1(s) + ξi2ψ2(s), where ξil

iid∼
N(0, λl) for l = 1, 2. The measurement errors εi(sm) = εi,m

iid∼
N(0, σ 2(sm)). We generate Z from a three-dimensional standard
normal distribution with the index parameter vector β =
(1, 2, 3)T/

√
14. Besides, sm, Xi1, Xi2, ξijl and εi(sm) are indepen-

dent random variables. We set (λ1, λ2, σ 2(sm)) = (1.2, 1.2, 0.2)

and the eigenfunctions and varying coefficient functions as
follows: ψ1(s) = √

2 sin(2πs), ψ2(s) = √
2 cos(2πs), α1(s, u) =

5 sin(s) cos(u), α2(s, u) = 5 sin(u) cos(s) and α3 = 5u cos(s).
We conduct extensive simulation studies under different set-

tings and report the estimation results for M = 30, 50 and
n = 200, 300, 400 in 500 simulation replicates. We apply the
estimation procedure in Section 2 to each simulated dataset
and calculate all unknown parameters and functions. Table 2
summarizes the biases for the estimator of individual param-
eters. It shows that all biases are close to 0, which confirms
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Table 2. The biases (×10−2), the averaged ASEs (×10−2), the ESEs (×10−2), the empirical CP of the 95% confidence intervals for the estimators of parameters β1, β2 and
β3; the means and SEs of the RASEs defined in Equation (23) of the estimators for the varying coefficient functions αd(·, ·), d = 1, 2, 3, using the profile least-square (PLS)
method and the WPLS method when the sample size n = 200, 300, 400 and the number of observations per subject M = 30, 50.

β1 β2 β3

n M 30 50 30 50 30 50

Bias (CP) 200 PLS 0.140(0.97) 0.167(0.97) 0.129(0.97) 0.147(0.98) 0.087(0.96) 0.105(0.98)
WPLS 0.049(0.97) 0.039(0.96) 0.046(0.98) 0.025(0.98) 0.029(0.98) 0.020(0.98)

300 PLS 0.121(0.95) 0.138(0.96) 0.101(0.97) 0.115(0.97) 0.076(0.97) 0.084(0.97)
WPLS 0.035(0.95) 0.028(0.95) 0.033(0.97) 0.023(0.97) 0.025(0.97) 0.016(0.97)

400 PLS 0.107(0.95) 0.118(0.95) 0.093(0.95) 0.104(0.95) 0.070(0.95) 0.075(0.95)
WPLS 0.031(0.95) 0.025(0.95) 0.030(0.95) 0.021(0.95) 0.023(0.95) 0.014(0.95)

ASE (ESE) 200 PLS 0.211(0.192) 0.226(0.212) 0.184(0.175) 0.210(0.193) 0.124(0.118) 0.147(0.133)
WPLS 0.059(0.060) 0.046(0.047) 0.064(0.065) 0.036(0.033) 0.040(0.041) 0.027(0.025)

300 PLS 0.175(0.163) 0.185(0.183) 0.132(0.130) 0.161(0.143) 0.101(0.095) 0.115(0.108)
WPLS 0.052(0.051) 0.035(0.033) 0.059(0.060) 0.030(0.029) 0.039(0.038) 0.021(0.020)

400 PLS 0.144(0.141) 0.177(0.164) 0.116(0.113) 0.124(0.122) 0.075(0.073) 0.085(0.083)
WPLS 0.042(0.041) 0.031(0.030) 0.056(0.055) 0.026(0.025) 0.033(0.032) 0.019(0.018)

α1 α2 α3

n M 30 50 30 50 30 50

Mean(SE) 200 PLS 0.847(1.383) 0.893(1.701) 0.752(0.545) 0.796(0.728) 0.837(0.627) 0.881(0.957)
WPLS 0.755(0.955) 0.624(0.770) 0.703(0.523) 0.666(0.503) 0.738(0.489) 0.643(0.423)

300 PLS 0.733(1.026) 0.787(1.415) 0.567(0.502) 0.603(0.613) 0.552(0.543) 0.575(0.594)
WPLS 0.642(0.887) 0.516(0.630) 0.526(0.486) 0.510(0.443) 0.541(0.403) 0.525(0.334)

400 PLS 0.590(0.926) 0.609(1.195) 0.495(0.484) 0.520(0.516) 0.513(0.325) 0.547(0.354)
WPLS 0.560(0.735) 0.435(0.594) 0.473(0.446) 0.456(0.390) 0.487(0.307) 0.448(0.278)

Table 3. The means and SEs of the RASEs of the estimators for eigenfunctions ψl(·), l = 1, . . . , 2; the bias and ESE of the estimators for eigenvalues λl , l = 1, . . . , 2 and
error term variance σ 2 when the sample size n = 200, 300, 400 and the number of observations per subject M = 30, 50.

M = 30 M = 50

n = 200 n = 300 n = 400 n = 200 n = 300 n = 400

Mean(SE) ψ1 0.158(0.176) 0.133(0.152) 0.111(0.131) 0.099(0.114) 0.098(0.092) 0.080(0.081)
ψ2 0.143(0.144) 0.126(0.121) 0.103(0.110) 0.102(0.102) 0.083(0.093) 0.075(0.083)

Bias(ESE) λ1 0.188(0.103) 0.168(0.092) 0.135(0.073) 0.160(0.097) 0.132(0.082) 0.108(0.066)
λ2 0.387(0.092) 0.356(0.080) 0.303(0.076) 0.330(0.081) 0.270(0.076) 0.236(0.067)
σ 2 0.075(0.002) 0.072(0.003) 0.069(0.002) 0.046(0.003) 0.042(0.002) 0.041(0.001)

the consistency of these estimators. In addition, the WPLS
estimators have much smaller biases than the PLS estimators.
Table 2 also gives the average asymptotic standard errors (ASEs)
calculated through Theorem 1 and Theorem 5 and the empirical
standard errors (ESEs) among 500 simulation replicates. The
ESE becomes smaller as n increases. The biases, ASEs and ESEs
of the WPLS estimators also decrease as M increases. On the
other hand, the PLS estimators do not have this trend due to the
ignorance of spatial/temporal correlation. Moreover, the ASEs
and the corresponding ESEs are very comparable in each case.
Table 2 also shows the empirical coverage probabilities (CP) of
the 95% confidence intervals for individual parameters βl, l =
1, . . . , q, where standard errors (SEs) are calculated according to
the asymptotic formula. It is clear that all CP approach the 95%
level as the sample size n increases. This result is confirmatory
to the asymptotic normals of the index parameter estimators
established in Theorems 1 and 5.

In the nonparametric part, to evaluate the performance of
the estimator, α̂d, d = 1, . . . , p, we consider the root-average-
square-errors (RASEs):

RASE(̂αd) =
√√√√ 1

nM

M∑
m=1

n∑
i=1

(̂αd(sm, ui) − αd(sm, ui))
2. (23)

Table 2 displays the means and SEs of the RASEs in 500 sim-
ulation replicates. It shows that the RASEs of α̂d, d = 1, . . . , p,
become smaller when n increases and α̃d always performs better
than α̂d.

Now, we turn to the estimation of the covariance functions.
In Table 3, we show the bias and ESEs of the estimators of
eigenvalue λl, l = 1, 2 and variance σ 2. From this table, we
can see that the bias and ESE of these estimators decrease as
the sample size increases. About the estimated eigenfunctions
ψ̂l, l = 1, 2, we also consider the RASE. The result of ψ̂l is
showed in Table 3. From this table, we can see that the RASE
of ψl(·), l = 1, 2 decreases as n, M increases.

5.2. Simulation II

In this simulation study, the simulation settings are analogous
with those in Simulation I, except

α1(s, u) = sin(s)(1 + c cos(u)), α2(s, u) = (1 + c sin(u))s,
and α3 = cos(s)(1 + c2u), (24)

which is designed to test H0 : αd(s, u) = αd(s), d = 1, . . . , p,
where c = 0, 0.5, 1, and 1.5. When c = 0, the bivariate
functions reduce to univariate functions about s, and a larger
c indicates a stronger iteraction effect. We run the simulation
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Figure 4. (a) Estimated powers under different c in Equation (24) when the sample size n = 200, 300, 400 and the number of observations per subject M = 30, 50 . (b) The
simulated density of the L2-distance test statistic T defined in Equation (21) (solid line) and three bootstrap approximations (dashed lines) when the sample size n = 400
and the number of observations per subject M = 50.

Table 4. Results for testing whether the bivariate varying coefficient functions in Equation (25) can reduce to univariate functions.

H0 α(sm , Ui(β)) α1(sm , Ui(β)) α2(sm , Ui(β)) α(sm , Ui(β)) α1(sm , Ui(β)) α2(sm , Ui(β))

= α(sm) = α1(sm) = α2(sm) = α∗(Ui(β)) = α∗
1 (Ui(β)) = α∗

2 (Ui(β))

p-value 0.039 0.006 0.038 0.032 0.027 0.032

Table 5. The estimated coefficients, SEs, the lower bound (LB), and the upper bound (UB) of 95% confidence intervals for index parameters in the dynamic interaction
DISeF model (25) using the profile least square (PLS) method and the weighted profile least square (WPLS) method from the COVID-19 data.

PLS WPLS

Covariates Coefficients SE LB UB Coefficients SE LB UB

GDP 0.983 0.045 0.894 1.072 0.870 0.003 0.865 0.876
Physician 0.011 0.223 -0.435 0.458 0.489 0.005 0.480 0.499

Nurse -0.183 0.231 -0.644 0.279 0.059 0.006 0.048 0.070
Bed 0.006 0.190 -0.374 0.387 0.007 0.005 -0.003 0.018

500 times under different sample sizes. For each run, we draw
500 bootstrap resamples. The corresponding estimated powers
are shown in Figure 4 (a). It shows that the actual size is close
to the nominal size of 0.05 and the power goes to 1 rapidly
as c increases. Moreover, the power increases as the sample
size increases. We plot the density functions of the test statistic
T based on the 500 simulation replications and its bootstrap
approximation in Figure 4 (b) when the sample size n = 400
and the number of observations per subject M = 50. It shows
that the bootstrap approximations are close to the asymptotic
null distribution. For the sake of simplicity, we omit the plots
for other c, which have similar results.

6. Real Data Analysis

The proposed DISeF model is demonstrated via the analysis
of COVID-19 data and ADNI data. This section presents the
analysis of COVID-19 data introduced in Section 1. The anal-
ysis results on ADNI data can be found in the supplementary
document.

The functional response variable yi(sm) is the mortality rate
at the mth day since 100 confirmed cases for the ith country,
where m = 1, . . . , 120. The socio-economic covariates in the
vector Z = (Z1, Z2, Z3, Z4)

T are the GDP per capita (Z1),
the number of physicians per 1000 people (Z2), the number of

nurses per 1000 people (Z3), and the number of hospital beds
per 1000 people (Z4) of each country. Covariates of interest
consist of the intercept (X1 = 1), and the percentage of pop-
ulation with the age 65 and above (X2). We standardized all
covariates and the point-wise response variable to have mean
0 and variance 1.

We fit the following DISeF model:

yi(sm) = α1(sm, ZT
i β)+Xi2α2(sm, ZT

i β)+ηi(sm)+εi(sm). (25)

The above equation can be expressed as y(sm) = (Bm1(β), . . . ,
Bmn(β))Tθ + η(sm) + ε(sm), where y(sm) = (y1(sm), . . . , yn
(sm))T , η(sm) = (η1(sm), . . . , ηn(sm))T , and ε(sm) = (ε1(sm),
. . . , εn(sm))T .
In the COVID-19 data, there is obvious dependency among
countries (Cao, Ayako, and Scott 2020). To address this prob-
lem, we first estimate the spatial dependence among coun-
tries by using the exponential correlation matrix � (Minasny
and McBratney 2005). The (i, j)th element of � is �ij =
exp

(−dij/ρ
)
, where dij is the distance between the centers

of the two countries i and j based on their GPS coordinates,
and ρ is the correlation parameter. We choose the Vincenty’s
formula (Vincenty 1975) to calculate the distance dij. Although
the original time of each country has been reset, the maximum
likelihood estimator (MLE) ρ̂MLE = 1.031 of the parameter ρ

(Bachoc 2018) in the spatial dependence is obtained based on
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Figure 5. The barplots of the healthcare infrastructure index Ui(β) related to the COVID-19 mortality rate for 141 countries estimated based on the dynamic interaction
DISeF model (25) using the WPLS method. The top figure shows the indices of countries with positive healthcare infrastructure indices. The bottom figure shows the indices
of countries with negative healthcare infrastructure indices.

the response yi(sm). In the estimation procedure, for each point
sm, we first add a weight to the data using �: �−1/2y(sm) =
�−1/2 (Bm1(β), . . . , Bmn(β))T θ + �−1/2η(sm) + �−1/2ε(sm).
We then estimate the dynamic interaction DISeF model using
the weighted data �−1/2y(s) as the functional response.

Next, we will test whether the bivariate varying coefficient
functions in Equation (25) can reduce to univariate functions.
The test results are displayed in Table 4. It shows that we can
reject all null hypotheses at the 5% significant level, that is,
all bivariate varying coefficient functions in Equation (25) vary
with time and index.

Fitting the above model by the proposed PLS method and
WPLS method, we obtain the estimators of βl, l = 1, . . . , 4, the

SEs, and the 95% confidence intervals (CI), which are displayed
in Table 5. It shows that the SEs estimated by the WPLS method
are smaller than those estimated with the PLS method without
using the covariance matrix. The 95% confidence intervals for
the socio-economic covariates including GDP, the number of
physicians, and the number of nurses using the WPLS method
do not contain zero, indicating that these three socio-economic
covariates are significant. Table 5 also shows that the number of
hospital beds is not significant, which may due to the fact that
it is relatively easy for the governments to quickly increase the
number of beds when the beds are insufficient.

All the index parameters are positive, therefore, the index
Ui(β) = ZT

i β can be interpreted as the level of healthcare
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Figure 6. The results of the estimated bivariate varying-coefficient function for population aging α2(sm , Ui(β)) in the dynamic interaction DISeF model (25) using the
WPLS method from the COVID-19 data, where Ui(β) = ZT

i β is the healthcare infrastructure index related to the COVID-19 morality in the i-th country. (a). The heatmap of
the estimated α2(sm , Ui(β)), and it only shows the area where α2(sm , Ui(β)) is significantly nonzero by the pointwise t-test. (b). The plots of the estimated α2(sm , Ui(β))

for the 1st, 8th, 16th, 24th, 32nd, and 40th days since 100+ confirmed cases.

infrastructure related to the COVID-19 morality rate in the
ith country. The larger the Ui(β), the better the healthcare
infrastructure. Figure 5 displays the barplots of the healthcare
infrastructure index Ui(β) related to COVID-19 morality rate.
The top subfigure in Figure 5 shows that the top five countries
with relatively good healthcare infrastructure are all developed
countries, namely Norway, Switzerland, Ireland, Sweden, and
Denmark. The bottom subfigure in Figure 5 shows that the five
countries with the lowest healthcare infrastructure index are
Somalia, Malawi, Niger, Burundi, and Liberia. For the bivariate
varying-coefficient function of population aging α2(sm, Ui(β)),
we conduct a pointwise t-test of whether the function value
α2(sm, Ui(β)) = 0 according to the result of Theorem 5-(ii)-
(b). Based on the above test, we only show the significant area
of the heatmap of the estimated varying-coefficient function for
population aging in Figure 6(a). We also plot α2(sm, Ui(β)) at
fixed chosen days in Figure 6(b).

In the early stage (about from the first to the 40th day), Fig-
ure 6 shows that (i) α2(sm, Ui(β)) decreases with the healthcare
infrastructure index when sm is fixed. For countries with the
healthcare infrastructure index −1.260 ≤ Ui(β) ≤ −0.433,
the population aging has a significant positive impact on the
COVID-19 mortality rate; (ii) when the healthcare infrastruc-
ture index −0.433 ≤ Ui(β) ≤ 1.224, the population aging has
no significant impact on the COVID-19 mortality rate; and (iii)
for countries with the healthcare infrastructure index 1.224 ≤
Ui(β) ≤ 4.094, the good healthcare infrastructure can suppress
the impact of population aging on the COVID-19 mortality
rate; the greater the value of Ui(β), the greater the suppression
impact.

During the early and middle stages, for countries with the
healthcare infrastructure index 1.224 ≤ Ui(β) ≤ 4.094, the
bigger Ui(β) is, the later the significant suppression impact ends.
When the healthcare infrastructure index belongs to the interval
[4.011, 4.094], such as Norway with U(β) = 4.094, the suppres-
sion impact brought by the high economic and medical level
can last at least 120 days after 100+ confirmed cases, although
in the intermediate stage, the impact weakened. In Sweden, a
developed Nordic country with U(β) = 3.011 ∈ [2.756, 4.011],
the suppression impact vanishes during the middle stage. For

countries with the healthcare infrastructure index 1.911 ≤
Ui(β) ≤ 2.756, for example, the United States (U(β) =
2.473) and Singapore (U(β) = 2.443), with the development
of the epidemic, the available medical care becomes saturated,
the suppression effect disappears in the mid-late stage and the
population aging starts to have no significant impact on the
COVID-19 mortality rate. Canada has the middle healthcare
infrastructure index U(β) = 1.752 ∈ [1.224, 1.911]. The
function α2(sm, Ui(β)) is significantly negative only from March
11 to March 21. During the end of March to the end of May,
the COVID-19 mortality rate increases rapidly, and suppression
impact of good medical standards vanishes. Even starting June,
due to the development of the epidemic, the mortality rate
increases as population aging increases. During the 120 days,
population aging has no significant effect on the mortality rate
for those countries with 0.610 < Ui(β) < 1.224. For those
countries with 0.610 < Ui(β) < −0.433 (e.g., U(β) = −0.072
for Brazil), the healthcare infrastructure does not suppress the
impact of population aging on the COVID-19 mortality rate
until the later stage. In general, Figure 6 (a) shows that after
about the 80th day since 100+ confirmed cases, the impact of
population aging on the mortality rate is more complicated,
which may be due to the policies, climate changes in various
country and the mutation of coronavirus.

7. Concluding Remarks

We propose the DISeF model to characterize the dynamic inter-
action between covariates and their effects on the functional
response. The proposed model includes many popular models
as special cases. In this article, we develop a three-step estima-
tion procedure to estimate the vector of index parameters, the
bivariate varying-coefficient functions, the covariance function
of random effects. And we also extend our estimation procedure
to the DISeF model with multi-index. We also establish the
asymptotic results when the sample size, n, and the number of
observations per subject, M, tend to infinity but M increases
relatively more slowly than n. Besides, we propose a hypothesis
testing method to test whether the bivariate varying-coefficient
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function can reduce to a univariate function. Our proposed
DISeF model is also used to analyzing the COVID-19 data and
the ADNI data. In both applications, the hypothesis testing
shows that the bivariate varying-coefficient functions signifi-
cantly vary with the index and the time/location. Therefore,
the proposed DISeF model is more appropriate than some
existing models. There are some challenging problems to be
addressed in future research. First, we will extend this model
with high dimensional covariates Z. Second, we will consider a
unified inference for longitudinal/functional data with sparse or
dense observations for each subject. There are other methods to
address the spatial dependence among different countries, such
as the factor model or the copula model . We will consider these
models in our future work.

Supplementary Materials

The supplementary document provides the estimation procedure under
the null hypothesis of Section 4, the theoretical proofs of the asymptotic
results, additional simulation studies and the analysis of ADNI data. The
computing codes of the simulation studies and real data analysis are also
provided.
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Appendix A: Conditions

The needed technical conditions are as follows:

(C1) (i) The density function fU(β)(·) of random variable U(β) =
ZTβ is bounded away from 0 on Sω and fU(β)(·) ∈ C0,1(Sω)

for β in the neighborhood of β0, where Sω = {ZTβ , Z ∈ S}
and S is a compact support support set of Z. Without loss of
generality, we assume Sω = [0, 1]. (ii) The density function fs(·)
of random variable sm is bounded away from 0 on [0, 1] and
fs(·) ∈ C0,1[0, 1]; (iii) The joint density function f (s, u) of random
variable (sm, Ui(β)) and its partial derivatives up to second order
are continuous and f (s, u) is bounded away from 0.

(C2) (i) For every 1 ≤ d ≤ p, the nonparametric function αd(·, ·) ∈
C(r)[0, 1]2 ; (ii) For all 1 ≤ i ≤ n, the individual random function
ηi(·) ∈ C(r1)[0, 1]; (iii) The variance of error term σ 2(·) ∈
C(r2)[0, 1], where integers r, r1, r2 ≥ 2 and the cubic spline order
4 satisfies r, r1, r2 ≤ 4; (iv) Besides, for every 1 ≤ d ≤ p,
1 ≤ k ≤ q, gd,k(·, ·) ∈ C(1)[0, 1]2 and g∗

d,k(·, ·) ∈ C(1)[0, 1]2.
(C3) (i) The variance matrix of ε(s) at different time/spatial points

is measurable and bounded. (ii) The matrix of the covariance

function R(s, t) at different time/spatial points is bounded. (iii)
For the spatial covariance matrix �, its eigenvalues are bounded
away from zero and infinity.

(C4) There exist constants 0 ≤ cQ ≤ CQ ≤ ∞, such that cQ ≤ Q(z) =
E(XXT |Z = z) ≤ CQ for all z ∈ S.

(C5) The eigenvalues of V(β0) = E(Bi(β0)
TBi(β0)) are bounded

away from zero and infinity, which ensures V(β0) is invertible.
(C6) The functional classes {η(s) : s ∈ [0, 1]}, {η(s)η(t) : (s, t) ∈

[0, 1]2} are Donsker.
(C7) All components of R(s, t) have continuous second-order partial

derivatives with respect to (s, t) ∈ [0, 1]2.
(C8) The relationship between M and n is n1/5 << M ≤ Cn1/4 as

both M and n converge to ∞.

Remark 5. Conditions (C1)-(i) and (C1)-(ii) are the same as Condition
(C1) in Ma and Song (2015). (C1)-(iii) is the regularity condition
about the joint density function of sm and U(β). Conditions (C2) and
(C7) assume the degree of the smoothness of the varying coefficient
functions, the covariance function R(s, t), the covariance function of
error term, the functions gk defined in Equation (14) and the functions
g∗

k defined in (15). Conditions (C3) and (C4) place some restrictions on
the moments of covariates Xi, error term and individual term, respec-
tively. Condition (C6) is the same as Assumption 2 in Li, Huang, and
Zhu (2017). Condition (C8) is used to prove the asymptotic properties
of the estimators obtained from the WPLS method.
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